1. Introduction to Performance Analysis

• Goal: To analyze the efficiency of algorithms

• Definition:

 • The space complexity of a program is the amount of memory that it needs to run to completion.

 • The time complexity of a program is the amount of computer time that it needs to run to completion.

• Space Complexity

 • \(S(p) = C_p + V_p(I) \)

 ▪ \(S(p) \) is the total space requirement for program \(p \)
 ▪ \(C_p \) is the fixed space requirement of program \(p \).
 ▪ \(V_p(I) \) is the variable space requirement of instance \(I \) of program \(p \).

 • fixed space requirement: the space requirement that do not depend on the number and size of the program input and output. It includes the instruction space + simple variables space.

 • variable space requirement: the space requirement that depends on the particular instance \(I \) of the problem being solved.
• Example : /* only fixed space requirement */

```c
main()
{
    int a=7,b=15;
    printf("%d\n",a+b);
}
```

• Example :

```c
int fact(int n)
{
    if (n==0) return (1);
    else return(n * (n-1));
}
```

assume we need x bytes to store information of each recursive call, we need approx. total variable space of (n+1) * x bytes

• Time Complexity

• The time taken by a program

\[T(p) = \text{compile time (fixed) + run (or execution) time } E_p(I) \]

- \(T_p \) is the total time requirement for program \(p \)
- \(E_p(I) \) is the total run time for program \(p \) with particular instance \(I \).

• For \(E_p(I) \), need to know a detailed knowledge of executable code and the time needed to perform each operation on specific hardware.

For example : \(c = a+b; \) \(\rightarrow \) load \(a \); load \(b \); add; store \(c \)

** very difficult.
• Use other methods to estimate $T(p)$

• use system command such as "time" in Unix to approximate the run
time. difficult to analyze!

• set a global counter in your program to count the number of steps that
a program needs to solve an instance I.

very difficult for a complex problem, we may need to find out the best,
average and worst case scenarios

Example : Add two arrays a and b

```
for (i=0; i < rows; i++) /* count++ */
for (j=0; j < cols; j++) /* count++ */
c[i][j] = a[i][j]+b[i][j]; /* count++ */
```

Assume count = 0 (initially) and each step takes constant time, we
have

- i for-loop statement, executed $rows + 1$ times,
- j for-loop statement, executed $rows*(cols + 1)$ times,
- the statement in j-loop, executed $rows*cols$ times
- total counts : $2*rows*cols + 2*rows + 1$

If $rows >> cols$, should interchange the matrices to minimize the
total counts.

• Asymptotic notation : The approximation of step counts (Only cover
Big O here. You also need to know definitions of Big Omega Ω and
Big Theta Θ)
• Def [Big O] : A function f(n) is said to be O(g(n)) iff there exist positive constants c and n₀ such that f(n) \leq c \cdot g(n) for all n, n \geq n₀. Read : f of n is big o of g of n

• O(g(n)) is an upper bound of f(n), should try to find as small g(n) as possible

• Example :
 - f(n) = 3n+2, O(n) because 3n+2 \leq 4n for all n \geq 2
 - f(n) = 10, O(1) because 10 \leq 10 \cdot 1 for all n > 0
 - f(n) = 10n²+4n+2, O(n²) because f(n) \leq 11 \cdot (n²) for all n \geq 5
 - f(n) = 6\cdot(2^n)+n², O(2^n) because f(n) \leq 7\cdot(2^n) for all n \geq 4

• You may think of f(n) is the running time of program, n is the input size of the program and g(n) is the approximate upper bound of f(n), i.e. worst case

• Example 1: For matrix addition, we have

 \begin{align*}
 \text{O(rows)} & \quad \text{for i for-loop statement} \\
 \text{O(rows*cols)} & \quad \text{for j for loop statement} \\
 \text{O(rows*cols)} & \quad \text{for the statement in j for loop}
 \end{align*}

 \text{Total : O(rows*cols)}
• Example 2: Binary Search

each iteration: constant c time to find middle element; compare elements & discard half of the list

\# elements after each iteration: \(n \rightarrow \frac{n}{2} \rightarrow \frac{n}{4} \rightarrow \frac{n}{2^i} \rightarrow \ldots \rightarrow 1 \)

we have \(\log n \) iterations; total time = \(c \times \log n = O(\log n) \)

• Example 3: factorial

each iteration, constant c time,
each time we reduce the number \(n \) by 1
we have \(n \) iterations
total time = \(c \times n = O(n) \)

• Main Problem: constant numbers and lower terms are eliminated. They may be a very large number.

• Here are the list of common time complexities:

\[O(1), O(\log n), O(n), O(n \log n), O(n^2), O(2^n) \text{ etc} \]

<table>
<thead>
<tr>
<th>Time</th>
<th>Name</th>
<th>(n \rightarrow)</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Constant</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>log</td>
<td>Logarithmic</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>(n)</td>
<td>Linear</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>(n \log n)</td>
<td>Log linear</td>
<td>0</td>
<td>2</td>
<td>8</td>
<td>24</td>
<td>64</td>
<td>160</td>
<td></td>
</tr>
<tr>
<td>(n^2)</td>
<td>Quadratic</td>
<td>1</td>
<td>4</td>
<td>16</td>
<td>64</td>
<td>256</td>
<td>1024</td>
<td></td>
</tr>
<tr>
<td>(n^3)</td>
<td>Cubic</td>
<td>1</td>
<td>8</td>
<td>64</td>
<td>512</td>
<td>4096</td>
<td>32768</td>
<td></td>
</tr>
<tr>
<td>(2^n)</td>
<td>Exponential</td>
<td>2</td>
<td>4</td>
<td>16</td>
<td>256</td>
<td>65536</td>
<td>4294967296</td>
<td></td>
</tr>
<tr>
<td>(n!)</td>
<td>Factorial</td>
<td>1</td>
<td>2</td>
<td>24</td>
<td>40326</td>
<td>2E13</td>
<td>4E47</td>
<td></td>
</tr>
</tbody>
</table>
2. Mathematical Induction and Recursion

• Recursion:

 base case: solve directly
 arbitrary size: break into smaller problems

• Mathematical Induction:

 base case: prove it is correct directly
 arbitrary size n: prove it is correct by assuming OK m < n

• Use Mathematical induction to prove correctness of recursive algorithms and to compute the run time of recursive algorithms

• The correctness of the recursive factorial function

fact(n) {
 if (n == 0) return 1;
 else return (n * fact(n-1));
}

Proof by induction on n

Basis: To show fact(0) returns 1, i.e. 0! = 1

 fact() correctly return 1 when n = 0. Obvious case.

Inductive Hypothesis: assume fact(k) correctly compute k!
Inductive step: show that fact(k+1) correctly compute (k+1)!

\[
\text{fact}(k+1) = (k+1) \times \text{fact}(k); \quad \text{// from the program}
\]

by the hypothesis, \(\text{fact}(k) = k! \)

\[
\Rightarrow \text{fact}(k+1) = (k+1) \times k! = (k+1)! \quad < \text{DONE} >
\]

• The running time of Towers of Hanoi

Let \(T(n) \) be the total number of moves for \(n \) disks

- If \(n = 1 \) disk \(\Rightarrow T(1) = 1 \)
- If \(n > 1 \) disks \(\Rightarrow T(n) = T(n-1) + T(1) + T(n-1) = 2T(n-1) + 1 \)

Guess: \(T(n) = O(2^n - 1) \)

Use mathematical induction to show that \(T(n) = O(2^n - 1) \)

Basis: \(n = 1, T(n) = 2^1 - 1 = 1 \)

Inductive Hypothesis: assume \(T(k) = 2^k - 1 \)

Inductive step: show that \(T(k+1) = 2^{(k+1)} - 1 \)

\[
\begin{align*}
T(k+1) &= 2T(k) + 1 \\
&= 2(2^k - 1) + 1 \quad \text{(by hypothesis)} \\
&= 2^{(k+1)} - 1
\end{align*}
\]

Conclusion: the running time of Towers of Hanoi algorithm is \textit{exponential}!
3. Key property of prefix expression

Let $T[1..n]$ be a string, if $E = T[1..k]$ is a prefix expression and let $Y = T[k+1..m]$ and $k < m \leq n$, then EY cannot be a prefix expression, i.e. only one end point is possible for prefix E.

Show by induction on number of chars in E, i.e. $|E|$:

Recall :
- $<\text{prefix}> = <\text{identifier}> | <\text{operator}><\text{prefix}><\text{prefix}>
- $<\text{operator}> = + | - | * | /
- $<\text{identifier}> = a | b | \ldots | z$

- Basis : If $|E| = 1$, then E is single letter \Rightarrow EY cannot be prefix

- Inductive Hypothesis : Assume $|E| < n$ and E is prefix, then EY cannot be prefix

- Show : $|E| = n$ and E is prefix \Rightarrow EY cannot be prefix

Let $E = <\text{operator}> E_1 E_2$, where E_1 and E_2 are prefix and $|E_1| < n$ and $|E_2| < n$

Assume EY is prefix for some non-empty string Y
i.e. $EY = <\text{operator}> W_1 W_2$, W_1 and W_2 are prefix

If $|W_1| > |E_1| \Rightarrow W_1 = E_1 W^*$ cannot be prefix.
By hypothesis, E_1 is prefix $\Rightarrow E_1 W^*$ cannot be prefix.

If $|W_1| < |E_1| \Rightarrow E_1 = W_1 E^*$ cannot be prefix.
By hypothesis, W_1 is prefix $\Rightarrow W_1 E^*$ cannot be prefix.
This cannot be true since E_1 is prefix.

Therefore, $W_1 = E_1 \Rightarrow EY = <\text{operator}> E_1 W_2$

By the same argument, $W_2 = E_2$ and Y is empty \Rightarrow contradiction.